Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Adv Neurobiol ; 36: 329-363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468041

RESUMO

The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.


Assuntos
Doenças Neurodegenerativas , Humanos , Adulto , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Fractais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Envelhecimento , Cerebelo/diagnóstico por imagem , Cerebelo/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083205

RESUMO

Following spinal cord injury (SCI), upper extremity (UE) weakness may impede one's ability to carry out activities of daily living (ADLs). Such a limitation drastically lowers a person's level of independence. Additionally, therapy and the field of assistive technology continue to place a strong premium on the restoration of UE motor function in patients with SCI. The main objective of this study was to assess the benefits of an UE myoelectric-powered wearable orthosis (MPWO) produced by MyoMo, Inc. (Boston, MA) on improving UE motor function in order to enhance ADLs and quality of life in individuals with subacute SCI. A 43-year-old man with subacute incomplete SCI (iSCI), American Spinal Injury Association (ASIA) Impairment Scale (AIS) C grade received 18 sessions (over a period of six weeks) of UE mobility therapy utilizing the MPWO. The MPWO was used to enhance active range of motion (AROM) of the hand and elbow, and associated muscle activations. After training with the MPWO, hand and elbow AROM and muscle activations were enhanced. These preliminary findings imply that UE-MPWO device-assisted rehabilitation may increase participants' UE activities, leading to improved function.Clinical Relevance- These preliminary findings from a person with iSCI in the subacute phase indicate that training with UE-MPWO assistive devices may enhance UE use during ADLs for people with muscle weakness but still having some residual voluntary muscle activation ability.


Assuntos
Atividades Cotidianas , Traumatismos da Medula Espinal , Masculino , Humanos , Adulto , Qualidade de Vida , Traumatismos da Medula Espinal/reabilitação , Extremidade Superior , Aparelhos Ortopédicos
4.
Front Psychol ; 14: 1187175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333595

RESUMO

Objective: The objective of this review was to evaluate the efficacy of mental imagery training (MIT) in promoting bilateral transfer (BT) of motor performance for healthy subjects. Data sources: We searched 6 online-databases (Jul-Dec 2022) using terms: "mental practice," "motor imagery training," "motor imagery practice," "mental training," "movement imagery," "cognitive training," "bilateral transfer," "interlimb transfer," "cross education," "motor learning," "strength," "force" and "motor performance." Study selection and data extraction: We selected randomized-controlled studies that examined the effect of MIT on BT. Two reviewers independently determined if each study met the inclusion criteria for the review. Disagreements were resolved through discussion and, if necessary, by a third reviewer. A total of 9 articles out of 728 initially identified studies were chosen for the meta-analysis. Data synthesis: The meta-analysis included 14 studies for the comparison between MIT and no-exercise control (CTR) and 15 studies for the comparison between MIT and physical training (PT). Results: MIT showed significant benefit in inducing BT compared to CTR (ES = 0.78, 95% CI = 0.57-0.98). The effect of MIT on BT was similar to that of PT (ES = -0.02, 95% CI = -0.15-0.17). Subgroup analyses showed that internal MIT (IMIT) was more effective (ES = 2.17, 95% CI = 1.57-2.76) than external MIT (EMIT) (ES = 0.95, 95% CI = 0.74-1.17), and mixed-task (ES = 1.68, 95% CI = 1.26-2.11) was more effective than mirror-task (ES = 0.46, 95% CI = 0.14-0.78) and normal-task (ES = 0.56, 95% CI = 0.23-0.90). No significant difference was found between transfer from dominant limb (DL) to non-dominant limb (NDL) (ES = 0.67, 95% CI = 0.37-0.97) and NDL to DL (ES = 0.87, 95% CI = 0.59-1.15). Conclusion: This review concludes that MIT can serve as a valuable alternative or supplement to PT in facilitating BT effects. Notably, IMIT is preferable to EMIT, and interventions incorporating tasks that have access to both intrinsic and extrinsic coordinates (mixed-task) are preferred over those that involve only one of the two coordinates (mirror-task or normal-task). These findings have implications for rehabilitation of patients such as stroke survivors.

5.
Exp Brain Res ; 241(3): 905-915, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808464

RESUMO

BACKGROUND: It has been demonstrated that in young and healthy individuals, there is a strong association between the amplitude of EEG-derived motor activity-related cortical potential or EEG spectral power (ESP) and voluntary muscle force. This association suggests that the motor-related ESP may serve as an index of central nervous system function in controlling voluntary muscle activation Therefore, it may potentially be used as an objective marker to track changes in functional neuroplasticity due to neurological disorders, aging, and following rehabilitation therapies. To this end, the relationship between the band-specific ESP-combined spectral power of EEG oscillatory and aperiodic (noise) components-and voluntary elbow flexion (EF) force has been analyzed in elder and young individuals. METHODS: 20 young (22.6 ± 0.87 year) and 28 elderly (74.79 ± 1.37 year) participants performed EF contractions at 20%, 50%, and 80% of maximum voluntary contraction (MVC) while high-density EEG signals were recorded. Both the absolute and relative ESPs were computed for the EEG frequency bands of interest. RESULTS: The MVC force generated by the elderly was foreseeably lower than that of the young participants. Compared to young, the elderly cohort's (1) total ESP was significantly lower for the high (80% MVC) force task; (2) relative ESP in beta band was significantly elevated for the low and moderate (20% MVC and 50% MVC) force tasks; (3) absolute ESP failed to have a positive trend with force for EEG frequency bands of interest; and (4) beta-band relative ESP did not exhibit a significant decrease with increasing force levels. CONCLUSIONS: As opposed to young subjects, the beta-band relative ESP in elderly did not significantly decrease with increasing EF force values. This observation suggests the use of beta-band relative ESP as a potential biomarker for age-related motor control degeneration.


Assuntos
Articulação do Cotovelo , Músculo Esquelético , Humanos , Idoso , Eletromiografia , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Eletroencefalografia , Contração Isométrica/fisiologia
6.
J Neurophysiol ; 129(1): 56-65, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475885

RESUMO

High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) remains a promising strategy for neurorehabilitation. The stimulation intensity (SI) influences the aftereffects observed. Here, we examined whether single sessions of a 15 Hz rTMS protocol, administered at suprathreshold SI, can be safely administered to able-bodied (AB) individuals. Six right-handed men were included in this pilot study. HF-rTMS was delivered over the right M1, in 10 trains of 75 biphasic stimuli at 15 Hz, at 105-120% of the individual resting motor threshold (RMT). To assess safety, electromyography (EMG) was monitored to control for signs of spread of excitation and brief EMG burst (BEB) after stimulation. Additionally, TMS side effects questionnaires and the numeric rating scale (NRS) were administered during each session. We assessed corticospinal excitability (CSE) and motor performance changes with measures of resting (rMEP) and active (aMEP) motor evoked potential and grip strength and box and blocks test (BBT) scores, respectively. Overall, the sessions were tolerated and feasible without any pain development. However, EMG analysis during 15 Hz rTMS administration revealed increased BEB frequency with SI. Statistical models revealed an increase of CSE at rest (rMEP) but not during active muscle contraction (aMEP). No linear relationship was observed between 15 Hz rTMS SI and rMEP increase. No significant changes were highlighted for motor performance measures. Although feasible and tolerable by the AB individuals tested, the results demonstrate that when administered at suprathreshold intensities (≥ 105% RMT) the 15 Hz rTMS protocol reveals signs of persistent excitation, suggesting that safety precautions and close monitoring of participants should be performed when testing such combinations of high-intensity and high-frequency stimulation protocols. The results also give insight into the nonlinear existent relationship between the SI and HF-rTMS effects on CSE.NEW & NOTEWORTHY The results of this pilot study show the effects of a therapeutically promising 15 Hz repetitive transcranial magnetic stimulation (rTMS) protocol, administered at different suprathreshold intensities in able-bodied individuals. Although tolerable and feasible with a neuromodulatory potential, 15 Hz rTMS might result in persistent excitability that needs to be closely monitored if administered at suprathreshold stimulation intensity. These results reaffirm the importance of feasibility studies, especially in translational animal-to-human research.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Masculino , Humanos , Estimulação Magnética Transcraniana/efeitos adversos , Projetos Piloto , Córtex Motor/fisiologia , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2385-2389, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085970

RESUMO

Since its first use in spinal cord injury (SCI) in the early 2000s [1], high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) demonstrated a capacity to modulate corticospinal excitability (CSE) and motor performance. Studies focused on individuals with incomplete SCI. Here, we examined the feasibility of a 15-day therapeutic stimulation protocol combining HF-rTMS with task-specific motor training targeting the weaker hand in an individual with early chronic complete SCI. In this case report, we present evidence of progressive increase of CSE at rest and during muscle activation, and decreased cortical inhibition, associated with a trend toward improvement in pinch function of the weaker hand. These promising findings need to be confirmed in a larger population. Clinical Relevance- These preliminary results are promising and demonstrate the importance of a large number of training session repetitions to induce consistent changes relevant to the recovery after a complete SCI.


Assuntos
Traumatismos da Medula Espinal , Estimulação Magnética Transcraniana , Mãos , Humanos , Estimulação Magnética Transcraniana/métodos
9.
Front Hum Neurosci ; 16: 800349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463922

RESUMO

There is a growing interest in non-invasive stimulation interventions as treatment strategies to improve functional outcomes and recovery after spinal cord injury (SCI). Repetitive transcranial magnetic stimulation (rTMS) is a neuromodulatory intervention which has the potential to reinforce the residual spinal and supraspinal pathways and induce plasticity. Recent reviews have highlighted the therapeutic potential and the beneficial effects of rTMS on motor function, spasticity, and corticospinal excitability modulation in SCI individuals. For this scoping review, we focus on the stimulation parameters used in 20 rTMS protocols. We extracted the rTMS parameters from 16 published rTMS studies involving SCI individuals and were able to infer preliminary associations between specific parameters and the effects observed. Future investigations will need to consider timing, intervention duration and dosage (in terms of number of sessions and number of pulses) that may depend on the stage, the level, and the severity of the injury. There is a need for more real vs. sham rTMS studies, reporting similar designs with sufficient information for replication, to achieve a significant level of evidence regarding the use of rTMS in SCI.

10.
Front Hum Neurosci ; 16: 770053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360287

RESUMO

Repeatedly performing a submaximal motor task for a prolonged period of time leads to muscle fatigue comprising a central and peripheral component, which demands a gradually increasing effort. However, the brain contribution to the enhancement of effort to cope with progressing fatigue lacks a complete understanding. The intermittent motor tasks (IMTs) closely resemble many activities of daily living (ADL), thus remaining physiologically relevant to study fatigue. The scope of this study is therefore to investigate the EEG-based brain activation patterns in healthy subjects performing IMT until self-perceived exhaustion. Fourteen participants (median age 51.5 years; age range 26-72 years; 6 males) repeated elbow flexion contractions at 40% maximum voluntary contraction by following visual cues displayed on an oscilloscope screen until subjective exhaustion. Each contraction lasted ≈5 s with a 2-s rest between trials. The force, EEG, and surface EMG (from elbow joint muscles) data were simultaneously collected. After preprocessing, we selected a subset of trials at the beginning, middle, and end of the study session representing brain activities germane to mild, moderate, and severe fatigue conditions, respectively, to compare and contrast the changes in the EEG time-frequency (TF) characteristics across the conditions. The outcome of channel- and source-level TF analyses reveals that the theta, alpha, and beta power spectral densities vary in proportion to fatigue levels in cortical motor areas. We observed a statistically significant change in the band-specific spectral power in relation to the graded fatigue from both the steady- and post-contraction EEG data. The findings would enhance our understanding on the etiology and physiology of voluntary motor-action-related fatigue and provide pointers to counteract the perception of muscle weakness and lack of motor endurance associated with ADL. The study outcome would help rationalize why certain patients experience exacerbated fatigue while carrying out mundane tasks, evaluate how clinical conditions such as neurological disorders and cancer treatment alter neural mechanisms underlying fatigue in future studies, and develop therapeutic strategies for restoring the patients' ability to participate in ADL by mitigating the central and muscle fatigue.

11.
Front Psychol ; 13: 1052826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687842

RESUMO

Objective: The current review was aimed to determine the effectiveness of mental imagery training (MIT) on the enhancement of maximum voluntary muscle contraction (MVC) force for healthy young and old adults. Data sources: Six electronic databases were searched from July 2021 to March 2022. Search terms included: "motor imagery training," "motor imagery practice," "mental practice," "mental training," "movement imagery," "cognitive training," "strength," "force," "muscle strength," "performance," "enhancement," "improvement," "development," and "healthy adults." Study selection and data extraction: Randomized controlled trials of MIT in enhancing muscle strength with healthy adults were selected. The decision on whether a study met the inclusion criteria of the review was made by two reviewers independently. Any disagreements between the two reviewers were first resolved by discussion between the two reviewers. If consensus could not be reached, then it would be arbitrated by a third reviewer. Data synthesis: Twenty-five studies including both internal MIT and external MIT were included in meta-analysis for determining the efficacy of MIT on enhancing muscle strength and 22 internal MIT were used for subgroup analysis for examining dose-response relationship of MIT on MVC. Results: MIT demonstrated significant benefit on enhancing muscle strength when compared with no exercise, Effect Size (ES), 1.10, 95% confidence interval (CI), 0.89-1.30, favoring MIT, but was inferior to physical training (PT), ES, 0.38, 95% CI, 0.15-0.62, favoring PT. Subgroup analysis demonstrated that MIT was more effective for older adults (ES, 2.17, 95% CI, 1.57-2.76) than young adults (ES, 0.95, 95% CI, 0.74-1.17), p = 0.0002, and for small finger muscles (ES, 1.64, 95% CI, 1.06-2.22) than large upper extremity muscles (ES, 0.86, 95% CI, 0.56-1.16), p = 0.02. No significant difference was found in the comparison of small finger muscles and large lower extremity muscles, p = 0.19 although the ES of the former (ES, 1.64, 95% CI, 1.06-2.22) was greater than that of the later (ES, 1.20, 95%, 0.88-1.52). Conclusion: This review demonstrates that MIT has better estimated effects on enhancing MVC force compared to no exercise, but is inferior to PT. The combination of MIT and PT is equivalent to PT alone in enhancing muscle strength. The subgroup group analysis further suggests that older adults and small finger muscles may benefit more from MIT than young adults and larger muscles.

12.
Support Care Cancer ; 30(3): 2787-2792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837540

RESUMO

BACKGROUND: Persistent post-mastectomy pain (PPMP) is common after surgery. Although multiple modalities have been used to treat this type of pain, including medications, physical therapy, exercise interventions, cognitive-behavioral psychology, psychosocial interventions, and interventional approaches, managing PPMP may be still a challenge for breast cancer survivors. Currently, serratus plane block (SPB) as a novel regional anesthetic technique shows promising results for controlling chronic pain. METHODS: We report four cases of patients with PPMP that were treated using superficial serratus plane block (SSPB) at our clinic. A retrospective review of effect of pain relief was collected through postprocedure interviews. RESULTS: We found that two of our patients were successfully treated with SSPB for pain after treatment for breast cancer. The third patient had an intercostobrachial nerve block that produced incomplete pain relief but had adequate pain relief with a SSPB. However, the fourth patient reported no pain relief after SSPB. CONCLUSION: These cases illustrate that the patients with PPMP could benefit from SSPB. Particularly, we find patients with a subjective sense of "tightness" relating to reconstructive surgeries may be a good candidate for SSPB. Further studies are warranted to evaluate this block for PPMP, as it is low risk and relatively simple to perform.


Assuntos
Neoplasias da Mama , Bloqueio Nervoso , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia/efeitos adversos , Dor Pós-Operatória/terapia , Estudos Retrospectivos , Ultrassonografia de Intervenção
13.
Brain Behav ; 12(1): e2444, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859605

RESUMO

INTRODUCTION: Previous findings have demonstrated that several Gestalt principles do facilitate VSTM performance in change detection tasks. However, few studies have investigated the role of and time-course of global-local consistency in motion perception. METHODS: Participants were required to track a moving target surrounded by three different backgrounds: blank, inconsistent, or consistent. Global-local objects were be bound to move together (covariation). During the PMT, participants had to follow the moving target with their eyes and react as fast as possible when the target had just vanished behind the obstruction or would arrive at a predetermined point of interception. Variable error (VE) and constant error (CE) of estimated time-to-contact (TTC) and gain of smooth pursuit eye movements were calculated in various conditions and analyzed qualitatively. RESULTS: Experiment 1 established the basic finding that VSTM performance could benefit from global-local consistency. Experiment 2 extended this finding by eye-tracking device. Both in visible phase and in occluded phase, CEs were smaller for the target in a consistent background than for the target in an inconsistent background and for the target in a blank background, with both differences significant (ps < .05). However, the difference in VE among three conditions was not significant. At early stage (100-250 ms), later stage (2750-3000 ms), and termination stage (5750-6000 ms) of smooth pursuit, the velocity gains were higher in the trials with consistent backgrounds than in the trials with inconsistent backgrounds and blank backgrounds (ps < .001). With the exception of 100-250 ms phase, the means did not differ between the inconsistent background and the blank background trials (ps > .1). CONCLUSIONS: Global-local consistency could be activated within the first few hundred milliseconds to prioritize the deployment of attention and eye movement to component target. Meanwhile, it also removes ambiguity from motion tracking and TTC estimation under some unpredictable conditions, leading to the consistency advantage during smooth-pursuit termination phase. Global-local consistency may act as an important information source to TTC estimation and oculomotor response in PMT.


Assuntos
Percepção de Movimento , Acompanhamento Ocular Uniforme , Atenção/fisiologia , Movimentos Oculares , Humanos , Percepção de Movimento/fisiologia , Estimulação Luminosa
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4944-4948, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892317

RESUMO

Upper extremity (UE) weakness and/or paralysis following spinal cord injury (SCI) can lead to a limited capacity to perform activities of daily living (ADL). Such disability significantly reduces an individual's level of independence. Further, restoration of UE motor function in people with SCI remains a high priority in rehabilitation and the field of assistive technology. The overall goal of this study was to evaluate the effects of a myoelectric-powered wearable orthosis (MPWO) manufactured by MyoMo, Inc. (Boston, MA) for UE movement assistance on ameliorating UE motor function in order to improve ADL and quality of life in people with SCI. Two male participants with chronic incomplete SCI (iSCI), a 75- and a 31-year-old with AIS D and B, respectively, underwent 18 sessions (over 6 weeks) of UE movement rehabilitation using the MPWO. Handgrip strength, active range of motion (AROM) of the hand, response time to initiate a movement, and muscles activations were examined before and after the rehabilitation training using the MPWO. The response time to initiate UE movements decreased, and handgrip strength and AROM improved after training with the MPWO. These preliminary data suggest that rehabilitation with the use of the UE-MPWO device could enhance the participants' UE activities that led to improved function.Clinical Relevance- These preliminary results from two individuals with iSCI suggest that training with UE-MPWO assistive devices may improve UE utilization during ADL for individuals with muscle weakness or paralysis but still possessing residual voluntary muscle activation capabilities.


Assuntos
Traumatismos da Medula Espinal , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Adulto , Força da Mão , Humanos , Masculino , Aparelhos Ortopédicos , Qualidade de Vida , Extremidade Superior
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6751-6754, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892657

RESUMO

Conventional therapy improves motor recovery after stroke. However, 50% of stroke survivors still suffer from a significant level of long-term upper extremity impairment. Identifying a specific biomarker whose magnitude scales with the level of force could help in the development of more effective, novel, highly targeted rehabilitation therapies such as brain stimulation or neurofeedback. Four chronic stroke participants were enrolled in this pilot study to find such a neural marker using an Independent Component Analysis (ICA)-based source analysis approach, and investigate how it has been affected by the injury. Beta band desynchronization in the ipsilesional primary motor cortex was found to be most robustly scaling with force. This activity modulation with force was found to be significantly reduced, and to plateau at higher force than that of the contralesional (unaffected) side. A rehabilitation therapy that would target such a neuromarker could have the potential to strengthen the brain-to-muscle drive and improve motor learning and recovery.Clinical Relevance- This study identifies a neural marker that scales with motor output and shows how this modulation has been affected by stroke.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Projetos Piloto , Acidente Vascular Cerebral/terapia , Extremidade Superior
16.
Hum Brain Mapp ; 42(14): 4427-4447, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34312933

RESUMO

Traumatic brain injury (TBI) often results in balance impairment, increasing the risk of falls, and the chances of further injuries. However, the underlying neural mechanisms of postural control after TBI are not well understood. To this end, we conducted a pilot study to explore the neural mechanisms of unpredictable balance perturbations in 17 chronic TBI participants and 15 matched healthy controls (HC) using the EEG, MRI, and diffusion tensor imaging (DTI) data. As quantitative measures of the functional integration and segregation of the brain networks during the postural task, we computed the global graph-theoretic network measures (global efficiency and modularity) of brain functional connectivity derived from source-space EEG in different frequency bands. We observed that the TBI group showed a lower balance performance as measured by the center of pressure displacement during the task, and the Berg Balance Scale (BBS). They also showed reduced brain activation and connectivity during the balance task. Furthermore, the decrease in brain network segregation in alpha-band from baseline to task was smaller in TBI than HC. The DTI findings revealed widespread structural damage. In terms of the neural correlates, we observed a distinct role played by different frequency bands: theta-band modularity during the task was negatively correlated with the BBS in the TBI group; lower beta-band network connectivity was associated with the reduction in white matter structural integrity. Our future studies will focus on how postural training will modulate the functional brain networks in TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Ondas Encefálicas/fisiologia , Conectoma , Eletroencefalografia , Equilíbrio Postural/fisiologia , Substância Branca/patologia , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Substância Branca/diagnóstico por imagem
18.
Brain Sci ; 10(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227910

RESUMO

Older adults with mild cognitive impairment (MCI) are at an increased risk for falls and fall-related injuries. It is unclear whether current balance rehabilitation techniques largely developed in cognitively intact populations would be successful in older adults with MCI. This mapping review examined the available balance rehabilitation research conducted in older adults with MCI. Databases Medline, Cinahl, Cochrane, PubMed, Scopus, and PsycINFO were systematically searched from inception to August 2020. Twenty-one studies with 16 original randomized controlled trials (RCTs) involving 1201 older adults with MCI (>age 60) met the inclusion criteria, of which 17 studies showed significant treatment effects on balance functions. However, only six studies demonstrated adequate quality (at least single-blind, no significant dropouts, and intervention and control groups are equivalent at baseline) and evidence (medium or large effect size on at least one balance outcome) in improving balance in this population, and none of them are double- or triple-blind. Therefore, more high-quality RCTs are needed to inform future balance rehabilitation program development for older adults with MCI. Moreover, few studies examined the incidence of falls after the intervention, which limits clinical utility. Future RCTs should prospectively monitor falls or changes in risk of falls after the intervention.

19.
Neural Plast ; 2020: 8812984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488692

RESUMO

The neurophysiological mechanism of cancer-related fatigue (CRF) remains poorly understood. EEG was examined during a sustained submaximal contraction (SC) task to further understand our prior research findings of greater central contribution to early fatigue during SC in CRF. Advanced cancer patients and matched healthy controls performed an elbow flexor SC until task failure while undergoing neuromuscular testing and EEG recording. EEG power changes over left and right sensorimotor cortices were analyzed and correlated with brief fatigue inventory (BFI) score and evoked muscle force, a measure of central fatigue. Brain electrical activity changes during the SC differed in CRF from healthy subjects mainly in the theta (4-8 Hz) and beta (12-30 Hz) bands in the contralateral (to the fatigued limb) hemisphere; changes were correlated with the evoked force. Also, the gamma band (30-50 Hz) power decrease during the SC did not return to baseline after 2 min of rest in CRF, an effect correlated with BFI score. In conclusion, altered brain electrical activity during a fatigue task in patients is associated with central fatigue during SC or fatigue symptoms, suggesting its potential contribution to CRF during motor performance. This information should guide the development and use of rehabilitative interventions that target the central nervous system to maximize function recovery.


Assuntos
Eletroencefalografia/métodos , Fadiga/diagnóstico , Fadiga/fisiopatologia , Força da Mão/fisiologia , Neoplasias/diagnóstico , Neoplasias/fisiopatologia , Idoso , Fadiga/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações
20.
Neural Plast ; 2019: 2490750, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346330

RESUMO

Background and Purpose: Cancer-related fatigue (CRF) is widely recognized as one of the most common symptoms and side effects of cancer and/or its treatment. However, neuropathological mechanisms contributing to CRF are largely unknown, and the lack of knowledge makes CRF difficult to treat. Recent research has shown dissociation between changes in the brain and muscle signals during voluntary motor performance in cancer survivors with CRF, and this dissociation may be caused by an interruption in functional coupling (FC) of the two signals. The goal of this study was to assess the FC between EEG (cortical signal) and EMG (muscular signal) in individuals with CRF and compare the FC with that of healthy controls during a motor task that led to progressive muscle fatigue. Method: Eight cancer survivors with CRF and nine healthy participants sustained an isometric elbow flexion contraction (at 30% maximal level) until self-perceived exhaustion. The entire duration of the EEG and EMG recordings was divided into the first-half (less-fatigue stage) and second-half (more-fatigue stage) artifact-free epochs without overlapping. The EEG-EMG coupling (measured by coherence of the two signals) in each group and stage was computed. Coherence values at different frequencies were statistically analyzed using a repeated-measure general linear model. Results: The results demonstrated that compared to healthy controls, CRF participants sustained the contraction for a significantly shorter time and exhibited robust and significantly lower EEG-EMG coherence at the alpha (8~14 Hz) and beta (15~35 Hz) frequency bands. Both the CRF and healthy control groups exhibited significantly decreased EEG-EMG coherence from the less-fatigue to more-fatigue stages at the alpha and beta frequency bands, indicating fatigue-induced weakening of functional corticomuscular coupling. Conclusion: Impaired functional coupling between the brain and muscle signals could be a consequence of cancer and/or its treatment, and it may be one of the contributing factors to the abnormal feeling of fatigue that caused the early failure of sustaining a prolonged motor task.


Assuntos
Encéfalo/fisiopatologia , Fadiga/fisiopatologia , Contração Isométrica/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Neoplasias/fisiopatologia , Adulto , Idoso , Mapeamento Encefálico , Sobreviventes de Câncer , Eletroencefalografia , Eletromiografia , Fadiga/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...